# Extended Rosenbrock Function, n = 2 BEGIN x1 = -1.2 x2 = 1 f1 = 10 * (x2 - x1^2) f2 = 1 - x1 ff = f1^2 + f2^2 END FMin(ff, x1, x2) # Extended Rosenbrock Function, n = 4 BEGIN x1 = -1.2 x2 = 1 x3 = -1.2 x4 = 1 f1 = 10 * (x2 - x1^2) f2 = 1 - x1 f3 = 10 * (x4 - x3^2) f4 = 1 - x3 ff = f1^2 + f2^2 + f3^2 + f4^2 END FMin(ff, x1, x2, x3, x4) # Extended Rosenbrock Function, n = 6 BEGIN x1 = -1.2 x2 = 1 x3 = -1.2 x4 = 1 x5 = -1.2 x6 = 1 f1 = 10 * (x2 - x1^2) f2 = 1 - x1 f3 = 10 * (x4 - x3^2) f4 = 1 - x3 f5 = 10 * (x6 - x5^2) f6 = 1 - x5 ff = f1^2 + f2^2 + f3^2 + f4^2 + f5^2 + f6^2 gg = -ff END FMin(ff, x1, x2, x3, x4, x5, x6) # Extended Powell Singular Function, n = 4 BEGIN x1 = 3 x2 = -1 x3 = 0 x4 = 1 f1 = x1 + 10 * x2 f2 = sqrt(5) * (x3 - x4) f3 = (x2 - 2 * x3)^2 f4 = sqrt(10) * (x1 - x4)^2 ff = f1^2 + f2^2 + f3^2 + f4^2 END FMin(ff, x1, x2, x3, x4) # Extended Powell Singular Function, n = 8 BEGIN x1 = 3 x2 = -1 x3 = 0 x4 = 1 x5 = 3 x6 = -1 x7 = 0 x8 = 1 f1 = x1 + 10 * x2 f2 = sqrt(5) * (x3 - x4) f3 = (x2 - 2 * x3)^2 f4 = sqrt(10) * (x1 - x4)^2 f5 = x5 + 10 * x6 f6 = sqrt(5) * (x7 - x8) f7 = (x6 - 2 * x7)^2 f8 = sqrt(10) * (x5 - x8)^2 ff = f1^2 + f2^2 + f3^2 + f4^2 + f5^2 + f6^2 + f7^2 + f8^2 END FMin(ff, x1, x2, x3, x4, x5, x6, x7, x8) # Trigonometric Function, n = 2 BEGIN n = 2 x1 = 1 / n x2 = 1 / n f1 = n - (cos(x1) + (1) * (1 - cos(x1)) - sin(x1)) \ - (cos(x2) + (1) * (1 - cos(x1)) - sin(x1)) f2 = n - (cos(x1) + (2) * (1 - cos(x2)) - sin(x2)) \ - (cos(x2) + (2) * (1 - cos(x2)) - sin(x2)) ff = f1^2 + f2^2 END FMin(ff, x1, x2) # Trigonometric Function, n = 4 (???) BEGIN n = 4 x1 = 1 / n x2 = 1 / n x3 = 1 / n x4 = 1 / n f1 = n - (cos(x1) + (1) * (1 - cos(x1)) - sin(x1)) \ - (cos(x2) + (1) * (1 - cos(x1)) - sin(x1)) \ - (cos(x3) + (1) * (1 - cos(x1)) - sin(x1)) \ - (cos(x4) + (1) * (1 - cos(x1)) - sin(x1)) f2 = n - (cos(x1) + (2) * (1 - cos(x2)) - sin(x2)) \ - (cos(x2) + (2) * (1 - cos(x2)) - sin(x2)) \ - (cos(x3) + (2) * (1 - cos(x2)) - sin(x2)) \ - (cos(x4) + (2) * (1 - cos(x2)) - sin(x2)) f3 = n - (cos(x1) + (3) * (1 - cos(x3)) - sin(x3)) \ - (cos(x2) + (3) * (1 - cos(x3)) - sin(x3)) \ - (cos(x3) + (3) * (1 - cos(x3)) - sin(x3)) \ - (cos(x4) + (3) * (1 - cos(x3)) - sin(x3)) f4 = n - (cos(x1) + (4) * (1 - cos(x4)) - sin(x4)) \ - (cos(x2) + (4) * (1 - cos(x4)) - sin(x4)) \ - (cos(x3) + (4) * (1 - cos(x4)) - sin(x4)) \ - (cos(x4) + (4) * (1 - cos(x4)) - sin(x4)) ff = f1^2 + f2^2 + f3^2 + f4^2 END FMin(ff, x1, x2, x3, x4) # Helical Valley Function BEGIN x1 = -1 x2 = 0 x3 = 0 z = 2 * pi() rad y = atan2(x2, x1) / z f1 = 10 * (x3 - 10 * y ) f2 = 10 * (sqrt(x1^2 + x2^2) - 1) f3 = x3 ff = f1^2 + f2^2 + f3^2 END FMin(ff, x1, x2, x3) # Wood Function BEGIN x1 = -3 x2 = -1 x3 = -3 x4 = -1 ff = 100 * (x1^2 - x2)^2 + (1 - x1)^2 \ + 90 * (x3^2 - x4)^2 + (1 - x3)^2 \ + 10.1 * ((1 - x2)^2 + (1 - x4)^2) \ + 19.8 * (1 - x2) * (1 - x4) END FMin(ff, x1, x2, x3,x4)