# **Example 4.3a: Energy per Unit Mass** fluidP = 1500 N/m^2 z = 0.75 m rho = 1.02e3 kg/m^3 vel = 1e-6 m/s Etm = grav()*z + fluidP/rho + vel^2/2 #Fetter: 8.82 m^2/s^2 # **Example 4.3b: Pressure and Total Head** elevH_pt1 = 0 m elevH_pt2 = 50 m fluidP_pt1 = 9.0e5 N/m^2 fluidP_pt2 = 6.1e5 N/m^2 rho = 1000 kg/m^3 presH_pt1 = fluidP_pt1/(rho *grav()) totalH_pt1 = presH_pt1 + elevH_pt1 #Fetter: 92 m presH_pt2 = fluidP_pt2/(rho * grav()) totalH_pt2 = presH_pt2 + elevH_pt2 #Fetter: 112m # **Example 4.6.2: Applicability of Darcy's Law** rho = 0.999e3 kg/m^3 visc = 1.14e-2 g/s cm Rcrit = 1.0 dg = 0.05 cm velocity = Rcrit * visc / (rho *dg) #Fetter: 0.0023 m/s # **Example 4.13: Steady, Confined Flow** #--Part A: Daily water flow bo = 33 m width = 7 km deltaL = 1.2 km deltaH = 97.5 m - 89.0 m Ko = 1.2 m/day Qflow = Ko * bo * (deltaH/deltaL) * width; m^3/day #Fetter: 2000 m^3/day #--Part B: Potentiometric surface elevation x = 0.3 km qw = 0.29 m^2/day head1 = 97.5 m head = head1 - qw * 300 m /(Ko * bo) #Fetter: 95.3 # **Example 4.14a: Steady, Unconfined Flow** #--Part A: Discharge per unit width Ko = 0.002 cm/s n = 0.27 bo = 31 m depth1 = 21 m depth2 = 23.5 m Length = 175 m h1 = bo - depth1 h2 = bo - depth2 qprime = Ko*(h1^2 - h2^2) / (2*Length); m^2/day #Fetter: 0.21 m^2/day #--Part B: Average linear velocity at well 1 Vx = qprime/(n*h1); m/day #Fetter: 0.08 m/day #--Part C: Water table elevation at midpoint midPt = Length/2 head = (h1^2 - (h1^2 - h2^2)*midPt/Length)^0.5 #Fetter: 8.8 m # **Example 4.14b: Steady, Unconfined Flow** #--Part A: Water divide Length = 1500 ft Ko = 1.2 ft/day rain = 1.8 ft/year evap = 1.3 ft/year Hriver = 31 ft Hcanal = 27 ft effRecharge = rain - evap dist = Length/2 - Ko*(Hriver^2 - Hcanal^2)/(effRecharge*2*Length); ft #Fetter: 680 ft #--Part B: Maximum water table elevation Hmax = (Hriver^2 - (Hriver^2 - Hcanal^2)*dist/Length + effRecharge*(Length - dist)*dist/Ko)^0.5; ft #Fetter: 39 ft #--Part C: Discharge per 1000 ft width = 1000 ft qs = (Ko*(Hriver^2 - Hcanal^2)/(2*Length) - effRecharge*(Length/2))*width; ft^3/day #Corrected Fetter: -934 ft^3/day #--Part D: Daily discharge per 1000 ft qs = (Ko*(Hriver^2 - Hcanal^2)/(2*Length) - effRecharge*(Length/2-Length))*width; ft^3/day #Fetter: 1100 ft^3/day # Homework Problems: TBD