# Example 7.1 Sy = 100 ksi V1 = 1 in^3 E = 30 Mpsi Ua = Sy^2 * V1 / (2 * E) ; J Ubl = Sy^2 * (V1/2) / (2 * E) ; J Ubu = (Sy / 4)^2 * (2* V1) / (2 * E); J Ubl / Ua Ubu / Ua # Example 7.2 Se = 207 MPa V1 = 1 mm^3 E = 207 Mpa rho_g = 77 kN/m^3 Ua = Se^2 * V1 / (2 * E) ; J Ua / rho_g / V1 ; Se = 828 MPa V1 = 1 mm^3 E = 207 Mpa rho_g = 77 kN/m^3 Ua = Se^2 * V1 / (2 * E) ; J Ua / rho_g / V1 ; Se = 2.07 MPa V1 = 1 mm^3 E = 1.034 Mpa rho_g = 9.2 kN/m^3 Ua = Se^2 * V1/ (2 * E) ; J Ua / rho_g / V1 ; # Example 7.3 P = 100 lbf L1 = 60 in E = 1 Mpsi I = 6.46 in^4 k = 100 lbf/in h = 12 in Z = 3.56 in^3 dst_beam = P * L1^3 / (48 * E * I) ; in dst_spring = P / (2 * k) ; in dst_total = dst_beam + dst_spring ; in IF = 1 + sqrt(1 + 2 * h / dst_total) ddyn_beam = IF * dst_beam ; in ddyn_total = IF * dst_total ; in Pdyn = IF * P ; lbf # 756.738 lbf Mdyn = Pdyn * L1 / 4 ; lbf in sdyn = Mdyn / Z ; psi # Example 7.4 w = 2400 rpm r = 60 mm t = 20 mm V1 = pi() * r^2 * t ; mm^3 rho = 2000 kg/m^3 m1 = rho * V1 ; kg I = (1/2) * m1 * r^2 U = (1/2) * I * w^2 ; J G1 = 79 Gpa rs = 10 mm Ls = 250 mm Vs = pi() * rs^2 * Ls ; mm^3 t = 2 * sqrt(U * G1 / Vs) ; Mpa q = t * Ls / (rs * G1) ; deg # Example 7.5 Ki = 1.5 Ki^2 # Example 7.6 K0 = 1.5 Ki = 3.0 An_over_A0 = 4.0 sn_over_s0 = (Ki / K0) * An_over_A0 Un_over_U0 = sn_over_s0^2 # Example 7.7 # Original -- a Ki = 3.5 An_over_A0 = 0.857 Vn_over_V0 = 1.000 sn_over_s0 = An_over_A0 / Ki r1 = sn_over_s0^2 * Vn_over_V0 # Redesign -- b Ki = 3.0 An_over_A0 = 2.000 Vn_over_V0 = 0.4286 sn_over_s0 = An_over_A0 / Ki r2 = sn_over_s0^2 * Vn_over_V0 Ub_over_Ua = r2 / r1 # Homework Problems: TBD